profile picture

Peter W

- Research Program Mentor

PhD at Stanford University

Expertise

machine learning for healthcare, mobile and web development for healthcare

Bio

I am an Assistant Professor in Computer Science at the University of Hawaii at Manoa. I completed my PhD and MS at Stanford University and BA at Rice University. My research interests are in creating scalable, accessible, and usable digital health solutions for various psychiatric, developmental, and mental health conditions. My project interests include digital diagnostics of conditions and adaptive digital therapies for conditions using a combination of web/mobile applications and machine learning. Outside of research, I naturally enjoy going to the beach given that I am a professor in Hawaii. Besides that, I enjoy raising my dog with my wife and playing/making music. I am looking for students with either web development, mobile development, data analysis, or machine learning experience.

Project ideas

Project ideas are meant to help inspire student thinking about their own project. Students are in the driver seat of their research and are free to use any or none of the ideas shared by their mentors.

Digital Diagnostics

Digital diagnostics revolutionize the field of healthcare by leveraging advanced technologies to transform the way medical conditions are diagnosed. Combining artificial intelligence, machine learning, and big data analytics, digital diagnostics offer faster, more accurate, and cost-effective methods of assessing and monitoring patients' health. These innovative tools enable healthcare professionals to gather comprehensive patient data, including symptoms, medical history, and vital signs, and process it efficiently to generate precise diagnostic insights. By harnessing the power of digital platforms, such as mobile apps, wearables, and telemedicine, digital diagnostics empower individuals to actively participate in their healthcare, promoting early detection, personalized treatment plans, and improved patient outcomes. With the potential to revolutionize healthcare delivery, digital diagnostics represent a significant milestone in the quest for more efficient and patient-centric medical practices. This project involves developing a smartphone app or website which can be used to diagnose 1 or more health conditions. Prior projects have included Autism, Parkinson's, Dementia, Hypertension, Scoliosis, Alzheimer's, and Depression.

Machine Learning on Electronic Health Records

Machine learning techniques can be used to analyze the vast wealth of electronic health records (EHRs) contained within the National Institutes of Health (NIH) All of Us dataset, which contains data on hundreds of thousands of people. The goal of this project is to uncover valuable insights and patterns within the extensive collection of de-identified patient data, which spans diverse populations and health conditions. By leveraging the power of machine learning algorithms, researchers are able to sift through this treasure trove of information and identify hidden correlations, risk factors, and predictive models for various diseases and health outcomes. This project holds the potential to revolutionize healthcare by enabling precision medicine approaches, tailoring treatments, and interventions to individual patients based on their unique characteristics and medical histories. Furthermore, the findings derived from this research could inform policy decisions, enhance healthcare delivery, and contribute to the advancement of population health management strategies. With its scale and scientific rigor, this machine learning-driven analysis of EHRs represents a significant step forward in unlocking the transformative potential of big data in healthcare research and improving the health and well-being of individuals on a global scale.

Coding skills

Python, HTML/JavaScript/CSS, Java (Android development)

Teaching experience

Research mentor for several high school students, many who have published first-author papers and been admitted to top schools. AI instructor at Inspirit AI. TA for several courses at Stanford. Upcoming teacher for several CS courses at University of Hawaii at Manoa, starting with Human-Centered Artificial Intelligence in Fall 2022.

Credentials

Work experience

Google (2016 - 2016)
Software Engineering Intern
University of Hawaii at Manoa (2022 - Current)
Assistant Professor of Computer Science

Education

Rice University
BA Bachelor of Arts (2015)
Computer Science
Stanford University
MS Master of Science (2018)
Computer Science
Stanford University
PhD Doctor of Philosophy
Bioengineering

Completed Projects

Interested in working with expert mentors like Peter?

Apply now